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Housing price indexes for small areas

Smoothing in time and space
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Abstract This paper presents yet another alternative to estimate house price
indexes and their evolution over time and space. The model presented here builds
from Bdrcena et al. (2011) Barcena et al. (2013) which made use of a space-varying
quality adjustment fitted by geographically weighted regression (GWR) and a
smooth time adjustment common to the whole area analyzed. The model presented
here is a natural evolution from the aforementioned work and a refinement in the
sense that enables the analyst to estimate different time adjustments for different
locations. An application is given showing the different evolution of house prices
even in neighbouring districts of the Bilbao urban area.
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1 Introduction

There have been many modelling proposals for housing prices. In one way or
another, they all try to account for quality, location and, where transactions from
different periods are analyzed, time.
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The usual way to model quality is through a hedonic part which values different
attributes of a house: year of construction, type of construction, surface, equipment
and facilities, such as swimming pools, lifts, garages, etc.

Location is of paramount importance in the valuation of properties. To some
extent it could be accounted for by attributes such as distance to city center, prox-
imity to public transport, recreation facilities, etc. However the use of attributes
such as this never exhausts the influence of location, which is usually introduced
in the model explicitly. This can be done non-parametrically via smooth func-
tions of geographical coordinates, such as smooth-plate splines, or by letting the
coefficients of the hedonic part vary freely over space: geographically weighted
regression (GWR) is a popular way of doing so.

The effect of time usually enters models by way of a trend which attempts
to account for different prices over time of otherwise identical properties. It can
be argued that no property really remains the same over time, if anything else
because the environment changes: what used to be an isolated house may in time
become the center of a newly developed area, or close to new public transport.
Still, the use of trends to account for changes may be a convenient simplification.

The plan of the paper is as follows: Section 2 describes a model which gener-
alizes our previous work localizing estimated trends in prices. Section 4 illustrates
its performance on a large data set with over 230,000 observations, extending over
the period 2005-2017. Section 5 closes with some comments and conclusions.

2 A semi-parametric model with local trends

Our previous work was concerned with the estimation of price indices for housing.
Our raw data consisted of offered prices published by one of the leading property
webs in the country.

The specification chosen was,

log(P;) = iﬁi,/’zijJrs(f)Jreir (1)
=

In expression (1), P, is the price per square meter at time 7 of a house located
at coordinates' (x;,y;). The observed value of attribute j for the house at said
location is given by z;;; it can be qualitative (e.g. existence of central heating)
or numeric (e.g. total surface). The hedonic coefficients fj; give the valuation of
attribute j at location (x;,y;). Finally, s(¢) is a smooth function of time capturing
the evolution of prices. Since we targeted small areas (the city of Bilbao, Spain;
see for instance Bdrcena et al. (2011, 2013)), it made sense to consider a single
trend over the whole area.

It is straightforward to implement a back-fitting estimation routine (cf. Hastie
and Tibshirani (1991), § 4.4) for the model in (1), once we have routines for the
different tasks. These are readily available in, for instance, the R language, R Core
Team (2018). A GWR routine (see Harris et al. (2010)) is available in package
spgwr, Bivand and Yu (2017)). A smoothing spline routine (see for instance Eubank

1 As the area we will work with can be well approximated by a flat surface, projected UTM
coordinates are used.
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(1988); Hastie and Tibshirani (1991)) can be obtained from the mgcv package,
Wood (2017)).
The procedure can be sketched as follows:

Algorithm 1: Global trend with spatially varying attribute effects

Data: For i€, t € T: price of house i at time ¢, Py;
For i€, j € J: attribute j for house i, z;;;
For i € I: coordinates of house i, (x;,y;);
Preset tolerance n, GWR bandwidth b;.
Result: Estimated values of f;; and s(r).

Set s () =0, k=1; 1
while max, [s®) (1) —s*= V()| > n max, |s(k ( )| do 2
k=1 k
Use GWR to fit [log(Pt) (1)) = lﬁfj )z,-j + Ei([ ), 3
Compute residuals Si(t ) = log(B )— ):f 1[3 (k= 1>z,j ; 4
Smooth residuals é‘i(,k) over time to compute 5% (r);
Set k=k+1;
end 7
return Bu , s%)(¢) as final estimates of fB;; and s(t). 8

The back-fitting algorithm iterates lines 2 to 7 in Algorithm 1, estimating the
parametric in alternation with the non-parametric part until convergence; the loop
is exited when two successive estimates of the non-parametric time trend differ by
less than a fraction 1 of the largest value.

In line 5 of Algorithm 1, a smoothing spline is used; s*)(r) is estimated as the
piecewise cubic polynomial g(¢) which minimizes

Y (@7 g7 +2 [ (g0 @
icl ‘

The whole area can of course be divided in smaller regions to apply the previous
approach and obtain price trends s(¢) for each sub-region. However, a different
strategy is followed that allows for local trends while still borrowing strength from
neighbouring areas. If we want to estimate a local trend around location (xz,y)
we can replace g(f) computed as the minimizer of (2) by the minimizer g;(¢) of

Y w8 — g, (1)2 + A / )2t (3)
icl

were w;y are coefficients which weight more residuals é‘i(tk) which are closer to the
calibration point ¢; this produces for each calibration point a different price trend.

A common specification of wy, is:

vel*:b) (4)

where ¢ is a kernel function (Gaussian, triangular, bisquare...) and b is a parameter
controlling bandwidth. It should be noted that b need not be coincident with the
bandwidth used in the GWR.

wie = @ (Jxi —xe* + |yi —
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Using (3) instead of (2) in line 5 of Algorithm 1 produces a derivative algo-
rithm which yields estimates around the spatial point (x¢,y¢). Data points near the
calibration point of coordinates (x;,y;) are more heavily weighted, so the estimated
spline for location reflects primarily the evolution of prices nearby. Although the
differences with Algorithm 1 are conceptually small, we give the detailed descrip-
tion of the modified procedure in Algorithm 2.

Algorithm 2: Both time trend and attribute effects spatially varying

Data: For i€, t € T: price of house i at time ¢, Py;
For i €1, j € J: attribute j for house i, z;;;
For i € I: coordinates of house i, (x;,y;);
For ¢ € L: coordinates (x¢,y,) of locations at which trends are computed;
Preset tolerance 1, bandwidths by (GWR) and b, (residual smoothing).
Result: Estimates, list of estimated values of fB;; and s(¢) for each .

foreach ¢ in L do 1
Set sO (1) =0, k=1; 2
For i € I, compute weights wi; = ¢ (|x; — x¢|* + |yi — ye|*: 02) ; 3
while max, |s®) (1) — sV (r)| > n - max; |s%¥)(¢)| do 4

Use GWR to fit [log(P;) —s* V()] = ;’:1 ﬁi(;c*l)z,'j + Si(rk>; 5
Compute residuals éi(tk) =log(Py) — 5’21 ﬁi(jk_l)z[ i 6
Smooth residuals f—?igk) over time with weights wy to compute s®)(r); 7
Set k=k+1; 8

end
Estimates[¢] = list(ﬁi(jk), s® (1)) 10
end 11
return Estimates. 12

3 Related work

There is a vast literature on spatio-temporal models. For a good, book-length
introduction, see Cressie and Wikle (2011). LeSage and Pace (2004) contains also
a number of contributions. We cannot undertake a comprehensive review and will
only comment on work whose motivation or method is closest to ours.

Alternatives to Algorithm 1 exist. For instance, Brunauer et al. (2012) propose
a Generalized Additive Model (GAM) specified as:

ni = fi(zi) + f2(z2) + -+ folzig) +xi'y (5)

where x;'y is the parametric part which is considered global and f;(z;) are smooth
functions of time or spatial indices to accommodate variation in time and/or space.
In our model, instead, space variation is accounted for by GWR estimation, and a
only a smooth function (of time) is used to account for time variation. Many more
proposals have been put forward: articles with recent literature reviews include
Copiello (2020) and Gargallo et al. (2017).
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4 An example of use
4.1 Motivation

Algorithm 1 was successfully used to compute a price index for the city of Bilbao
(Spain), Bércena et al. (2011), Bércena et al. (2013) and has also been used by
other authors, e.g. Widlak et al. (2015, 2017).

It was observed in our previous work that, contrary to our assumption that
the trend of prices could be assumed unique for all dwellings within a relatively
small area (such as the city of Bilbao), this was not so: some areas appear to have
weathered the burst of the housing prices bubble much better than others. In fact,
areas in which different price trends exist appear to be often the case with housing
markets. For a literature review on housing market segmentation see Helbich et al.
(2013).

The obvious answer of fitting a model to each area appearing to display a
different price evolution is not always feasible (and often undesirable), as the areas
may be small and the available sample in them insufficient to support the required
computation. Algorithm 2 has been conceived instead as a way to fit price trends
(and compute indices) for very small areas while still “gathering strength” from
information in the vicinity. It extends to the estimation of the time trend the same
idea that GWR implements to estimate the attribute effects; spatial weighting,
which, unlike in Algorithm 1, is now also applied to the residuals computed in line
6 of Algorithm 2.

4.2 Data

A data set of dwellings advertised prices has been obtained from one of the leading
web portals in Spain. While these are not transacted prices, but rather offered
prices, they are still usable for the computation of a price index inasmuch as they
have a stable relation with final, transacted prices?.

The data extends from 2005 to 2017 and covers all the Basque Country, with
237,878 observations after discarding non geocoded or otherwise unusable data.
It is thus much more comprehensive (and detailed) than the data set used in our
previous work Bércena et al. (2013, 2014).

However, these observations are very unevenly distributed with the bulk of it in
the three largest towns: Bilbao, San Sebastidn and Vitoria. For the example next
only data from 2011 to 2017 has been used and only for the metropolitan area
of Bilbao, as only there data density in time and space supports the use of Algo-
rithm 2. For the illustration presented below, the number of effective observations
is just over 30,000.

Figure 1 shows a heat map the Greater Bilbao area, a conurbation housing over
1 million people along both banks of the Nervién river. Color coded are smoothed
median prices in euros per square meter in 2012 and 2017. It is apparent that the
city of Bilbao itself and the city of Getxo (label Algorta, right bank) are the most
highly priced areas. It is also apparent that there has been a general median price

2 For rental prices this assumption has been challenged: see for instance https://etxebizi
tza.blog.euskadi.eus/es/blog/sobre-el-alquiler-solo-sabemos-que-no-sabemos-nada/.
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Fig. 1 Metropolitan area of Bilbao: evolution of median prices in € per m? between 2012 and
2017
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Fig. 2 City of Bilbao: evolution of median prices in € per m? between 2012 and 2017
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drop in the five years from 2012 to 2017, visible in the fainter tones of red, which
in places turn to blue.

When we look in closer detail to each of the two areas, another feature is
apparent: the price drop does not appear to have been uniform all over space.
In Figure 2 we see a clear shrink of the reddish portion of central Bilbao (or
deeper blue tones in the peripheral districts of the city) in 2017 relative to 2012,
reflecting the drop of prices between these two dates. However, prime locations in
the financial district and newly developed areas have been least affected

This pattern is even clearer in the case of Getxo, Figure 3. There is a trend
towards lower prices per square meter, apparent in fainter red or even a switch
from reddish to blue, affecting all but a restricted area at the sea front —a place of
very expensive dwellings, seemingly less affected by the price drop. The message
both Figures 2 and 3 convey is that price evolution can be quite inhomogeneous
even inside a single town; and, in the two cases presented, it seems that prices of
the more expensive dwellings have been more resilient to a weak market than the
rest.

4.3 Computation of local price indices

The computation described in Algorithm 2 has been implemented in an R package®
of name ipv, in function BackFittinglocal. All the user has to provide in addition
to what is required to fit a single time trend? is:

1. A list of locations at which we want the time trend computed. These locations
will likely be the centroids of districts of neighbourhoods which we suspect

3 Presently not on CRAN, but available from the authors. Notice, though, that we are pre-
vented from distributing the data, so eventual users will not be able to reproduce the vignette
and examples shown. Also, documentation (in Spanish) is not yet translated to English.

4 Which is the purpose of function BackFitting in the same package.
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Fig. 3 City of Getxo: evolution of median prices in € per m? between 2012 and 2017
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different from the rest, either on a priori grounds or after looking at heat
maps such as Figures 2 and 3.

2. A bandwidth giving the maximum distance at which residuals computed in line
6 of Algorithm 2 will be given non-zero weight. This bandwidth is unrelated to
the one used in the GWR part of the algorithm.

It is important to realize that for each location in 1) a complete back-fitting
iteration as described in Algorithm 1 must be run, which is itself a rather heavy
computation if the number of observations is large. The computing effort grows
linearly with the number of locations selected, and for problems of realistic size
such as the example presented will be non trivial. Thankfully, R package spgwr,
Bivand and Yu (2017), which we use as a building block in Algorithms 1 and 2,
provides for parallel computation. For real size problems, a multi-core machine
will be almost mandatory.

In the interest of brevity, we will only compute two local indices for two areas
of Bilbao, where the density of observations is greater. Figure 4 is a blow-up of the
central area of Figure 2, giving a detailed view of downtown Bilbao. The two red
dots mark two locations (Plaza Ensanche and General Egufa) around which cluster
observations that Figure 2 suggests have experienced a different price evolution.
The straight line distance between the two points is 1297 meters.

Algorithm 2 has been used to compute local indices at both locations with
results that can be seen in Figure 5. The parametric part estimated by means of
GWR (line 5 of Algorithm 2) uses variables such as number of rooms, availability
of garden, elevator, terraces or parking space. The bandwidth is set at 500 meters
and a gaussian kernel is used: this implies that if observations right at the red
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Fig. 4 Central area of Bilbao City. Marked are two locations at which local indices are com-
puted, distant 1297 meters from each other. North East mark is “Plaza Ensanche”, central to
a high prices area; South West mark is “General Eguia”, central to an area more severely hit
by price drops.
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mark are given a weight of 1, those 500 meters away weight 0.6065 and those away
1000 meters weight only 0.13535.

On the other hand, the spatial weights for the spline smoother (wj, in line 7 of
Algorithm 2) are computed using a bandwidth of 200 meters. We emphasize that
both bandwidths may be different. The first may be understood as setting the
region within which the valuation of attributes in the hedonic part of the model
(the parametric model estimated by GWR) is similar; the second, as setting the
region whose price evolution in time is similar. Both bandwidths or either one
could theoretically be set by using cross-validation, but the computational effort
would be very high. In addition, it is usually the case that we are interested in
trends for specific areas, which imply the choice of bandwidth. We note however
that computationally lighter alternatives have been proposed, Murakami et al.
(2019), which make the use of cross-validation feasible.

Regarding the temporal smoothing, we have used 9 equivalent degrees of free-
dom to compute both local indices. The results can be seen in Figure 5. The base
has been set at 31 dec 2010, so the two indices start at the same point. It can

5 The weight function gwr.Gauss in the R package spgwr, Bivand and Yu (2017), is used.
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Fig. 5 Local indices for the two different locations marked in Figure 4. GWR bandwidth is
500 meters, bandwidth for spline weighting is 200 meters, kernel is gaussian.
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be seen that for the first location (“Plaza Ensanche”, blue trace) the price drop
appears to have ended by late 2013 with some fluctuations afterwards and a clear
rebound in 2017. For the second location (“General Eguia”, red trace) the price
drop continued till early 2016 and the recovery is less marked and leaves the index
in mid 2017 clearly below its counterpart for “Plaza Ensanche”. Not only this con-
firms what we could grasp from the heat maps in Figure 2, but also gives additional
information on the dynamic of prices.

5 Discussion

An algorithm for the computation of local house price indices has been introduced,
a natural evolution of Algorithm 1, and its performance demonstrated.

Among the strengths, it is relatively simple to implement, produces very de-
tailed information and is easy to understand and interpret.

Among the weaknesses, as we see them, it requires very heavy computation. A
multi-core machine can be used, but still the computational burden is important
for realistic problems, all the more so if one attempts to set bandwidths by cross-
validation: there are two spatial bandwidths rather than one —for the GWR part
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and for the spline— plus the analyst has to decide on the temporal bandwidth,
which is governed by the choice of degrees of freedom in the spline.

When indices for only a restricted area are sought, such as in the example
presented, one trick that speeds computations tremendously is to discard all ob-
servations which are sufficiently away from the locations of interest: “sufficiently
away” can be something like four times the largest bandwidth. An observation
4 bandwidths away receives already a weight of only 0.000335 with the gaussian
kernel that we used, so all observations beyond can be safely neglected in the local
computations.

Aspects that need elaboration, but are not specific to the algorithm presented,
concern the anisotropy of the space. This is particularly relevant when dealing
with small areas rather than averaging over wide regions. It is often the case
that areas with different behaviour are limited by administrative boundaries or
geographical features, such as rivers: one might want to compute local indices
taking into account these facts, which an isotropic kernel such as we have used
neglects. One can consider complementing the kernel with qualitative variables
(such as “left bank”, “right bank”, “district x”) to further restrict the scope of
observations which are used in the computation of local indices, but this is of
necessity an ad-hoc solution which needs re-implementing for each particular case.
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